Publication ListGlutamate

 

Awake-Behaving Animals:

  • Miller, E.M., Quintero, J.E., Pomerleau, F., Huettl, P., Gerhardt, G.A., Glaser, P.E.A. Chronic Methylphenidate Alters Tonic and Phasic Glutamate Signaling in the Frontal Cortex of a Freely-Moving Rat Model of ADHD. Neurochem. Res., 2018, https://www.ncbi.nlm.nih.gov/pubmed/29397534.

  • Batten, S.R., Pomerleau, F., Quintero, J., Gerhardt, G.A., Beckmann, J.S. The role of glutamate signaling in incentive salience: second-by-second glutamate recordings in awake Sprague-Dawley rats. J. Neurochem., 2018, 145(4):276-286.https://www.ncbi.nlm.nih.gov/pubmed/29315659.

  • Wang, D.V., Viereckel, T., Zell, V., Konradsson-Geuken, Å., Broker, C.J., Talishinsky, A., Yoo, J.H., Galinato, M.H., Arvidsson, E., Kesner, A.J., Hnasko, T.S., Wallén-Mackenzie, Å., Ikemoto, S. Disrupting Glutamate Co-transmission Does Not Affect Acquisition of Conditioned Behavior Reinforced by Dopamine Neuron Activation. Cell Rep., 2017;18(11):2584-2591. https://www.ncbi.nlm.nih.gov/pubmed/28297663.

  • Hunsberger, HC., Konat, GW., Reed, MN. Peripheral viral challenge elevates extracellular glutamate in the hippocampus leading to seizure hypersusceptibility. J. Neurochem., 2017;141(3):341-346. https://www.ncbi.nlm.nih.gov/pubmed/28244106.

  • Bortz, DM., Wu, HQ., Schwarcz, R., Bruno, JP. Oral administration of a specific kynurenic acid synthesis (KAT II) inhibitor attenuates evoked glutamate release in rat prefrontal cortex. Neuropharmacol., 2017;121:69-78. https://www.ncbi.nlm.nih.gov/pubmed/28419874.

  • Bortz, DM., Upton, BA., Mikkelsen, JD., Bruno, JP. Positive allosteric modulators of the α7 nicotinic acetylcholine receptor potentiate glutamate release in the prefrontal cortex of freely-moving rats. Neuropharmacol., 2016;111:78-91.. https://www.ncbi.nlm.nih.gov/pubmed/27569994

  • Miller, E.M., Quintero, J.E., Pomerleau, F., Huettl, P., Gerhardt, G.A. and Glaser, P.E. Simultaneous glutamate recordings in the frontal cortex network with multisite biomorphic microelectrodes: New tools for ADHD research. J. Neurosci. Meth., 2015252:75-9. http://www.ncbi.nlm.nih.gov/pubmed/25614383.

  • Mishra, D., Harrison, N.R., Gonzales, C.B., Schilstrom, B. and Konradsson-Geuken, A. Effects of age and acute ethanol on glutamatergic neurotransmission in the medial prefrontal cortex of freely moving rats using enzyme-based microelectrode amperometry. PloS one, 2015, 10(4):e0125567. http://www.ncbi.nlm.nih.gov/pubmed/25927237.

  • Pershing, M.L., Bortz, D.M., Pocivavsek, A., Fredericks, P.J., Jorgensen, C.V., Vunck, S.A., Leuner, B., Schwarcz, R. and Bruno, J.P. Elevated levels of kynurenic acid during gestation produce neurochemical, morphological, and cognitive deficits in adulthood: implications for schizophrenia. Neuropharmacol., 2015, 90:33-41. http://www.ncbi.nlm.nih.gov/pubmed/25446576.

  • Malvaez, M., Greenfield, VY., Wang, AS., Yorita, AM., Feng, L., Linker, KE., Monbouquette, HG., Wassum, KM. Basolateral amygdala rapid glutamate release encodes an outcome-specific representation vital for reward-predictive cues to selectively invigorate reward-seeking actions. Sci Rep., 2015, 5:12511. http://www.ncbi.nlm.nih.gov/pubmed/26212790

  • Miller, E.M., et al. Aberrant glutamate signaling in the prefrontal cortex and striatum of the spontaneously hypertensive rat model of attention-deficit/hyperactivity disorder. Psychopharmacol., 2014, 231(15):3019-29. http://www.ncbi.nlm.nih.gov/pubmed/24682500.

  • Fan, X.T., et al. Cortical glutamate levels decrease in a non-human primate model of dopamine deficiency. Brain Res., 2014, 1552(34-40. http://www.ncbi.nlm.nih.gov/pubmed/24398457.

  • Opris, I., et al. Prefrontal cortical recordings with biomorphic MEAs reveal complex columnar-laminar microcircuits for BCI/BMI implementation. J. Neurosci. Meth., 2014, 10.1016/j.jneumeth.2014.05.029 http://www.ncbi.nlm.nih.gov/pubmed/24954713.

  • Parikh, V., et al. Cocaine-induced neuroadaptations in the dorsal striatum: glutamate dynamics and behavioral sensitization. Neurochem. Int., 2014, 75(54-65. http://www.ncbi.nlm.nih.gov/pubmed/24911954.

  • Bortz, D.M., et al. Localized infusions of the partial alpha 7 nicotinic receptor agonist SSR180711 evoke rapid and transient increases in prefrontal glutamate release. Neuroscience, 2013, 255:55-67. http://www.ncbi.nlm.nih.gov/pubmed/24095692.

  • Hampson, R.E., et al. Conformal Ceramic Electrodes That Record Glutamate Release and Corresponding Neural Activity in Primate Prefrontal Cortex. 35th Annual International Conference of the IEEE EMBS, 2013,  http://www.ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6610908.

  • Hascup, E.R., et al. An allosteric modulator of metabotropic glutamate receptors (mGluR(2)), (+)-TFMPIP, inhibits restraint stress-induced phasic glutamate release in rat prefrontal cortex. J. Neurochem., 2012, 122(3):619-27. http://www.ncbi.nlm.nih.gov/pubmed/22578190.

  • Wassum, K.M., et al. Transient extracellular glutamate events in the basolateral amygdala track reward-seeking actions. J. Neurosci., 2012, 32(8):2734-46.

  • Hascup, K.N., et al. Resting glutamate levels and rapid glutamate transients in the prefrontal cortex of the Flinders Sensitive Line rat: a genetic rodent model of depression. Neuropsychopharmacol., 2011, 36(8):1769-77. http://www.ncbi.nlm.nih.gov/pubmed/21525860.

  • Mattinson, C.E., et al. Tonic and phasic release of glutamate and acetylcholine neurotransmission in sub-regions of the rat prefrontal cortex using enzyme-based microelectrode arrays. J. Neurosci. Meth., 2011, 202(2):199-208. http://www.ncbi.nlm.nih.gov/pubmed/21896284.

  • http://www.ncbi.nlm.nih.gov/pubmed/22357857.

  • Stephens, M.L., et al. Real-time glutamate measurements in the putamen of awake rhesus monkeys using an enzyme-based human microelectrode array prototype. J. Neurosci. Meth., 2010, 185(2):264-72. http://www.ncbi.nlm.nih.gov/pubmed/19850078.

  • Dash, M.B., et al. Long-term homeostasis of extracellular glutamate in the rat cerebral cortex across sleep and waking states. J Neurosci., 2009, 29(3):620-9. http://www.ncbi.nlm.nih.gov/pubmed/19158289.

  • Hascup, E.R., et al. Histological studies of the effects of chronic implantation of ceramic-based microelectrode arrays and microdialysis probes in rat prefrontal cortex. Brain Res., 2009, 1291(12-20. http://www.ncbi.nlm.nih.gov/pubmed/19577548.

 

Anesthetized Animals:

  • Ferreira, N.R., Ledo, A., Laranjinha, J., Gerhardt, G.A., Barbosa, R.M.Simultaneous measurements of ascorbate and glutamate in vivo in the rat brain using carbon fiber nanocomposite sensors and microbiosensor arrays. Biochem. 2018, 121:142-150.https://www.ncbi.nlm.nih.gov/pubmed/29413864.

  • Viereckel, T., Konradsson-Geuken, Å., Wallén-Mackenzie, Å.Validated multi-step approach for in vivo recording and analysis of optogenetically evoked glutamate in the mouse globus pallidus. J. Neurochem. 2018, 145(2):125-138. https://www.ncbi.nlm.nih.gov/pubmed/29292502

  • Scofield, M.D. Exploring the Role of Astroglial Glutamate Release and Association With Synapses in Neuronal Function and Behavior. Biol. Psychiatry 2018, 84(11):778-786. http://www.ncbi.nlm.nih.gov/pubmed/29258653

  • Thomas, T.C., Beitchman, J.A., Pomerleau, F., Noel, T., Jungsuwadee, P., Butterfield, D.A., Clair, D.K.S., Vore, M., Gerhard,t G.A. Acute treatment with doxorubicin affects glutamate neurotransmission in the mouse frontal cortex and hippocampus. Brain Res. 2017, 1672:10-17. http://www.ncbi.nlm.nih.gov/pubmed/28705715

  • Sompol, P., Furman, J.L., Pleiss, M.M., Kraner, S.D., Artiushin, I.A., Batten, S.R., Quintero, J.E., Simmerman, L.A., Beckett, T.L., Lovell, M.A., Murphy, M.P., Gerhardt, G.A., Norris, C.M. Calcineurin/NFAT Signaling in Activated Astrocytes Drives Network Hyperexcitability in Aβ-Bearing Mice. J. Neurosci. 2017, 37(25):6132-6148. http://www.ncbi.nlm.nih.gov/pubmed/28559377

  • Hunsberger, HC., Setti, SE., Heslin, RT., Quintero, JE., Gerhardt, GA., Reed, MN. Using Enzyme-based Biosensors to Measure Tonic and Phasic Glutamate in Alzheimer's Mouse Models. J. Vis. Exp. 2017, 3(123). http://www.ncbi.nlm.nih.gov/pubmed/28518111

  • Hascup, KN., Lynn, MK., Fitzgerald, PJ., Randall, S., Kopchick, JJ., Boger, HA., Bartke, A., Hascup, ER. Enhanced Cognition and Hypoglutamatergic Signaling in a Growth Hormone Receptor Knockout Mouse Model of Successful Aging. J. Gerontol. A Biol. Sci. Med. Sci.  2017, 72(3):329-33. http://www.ncbi.nlm.nih.gov/pubmed/27208894

  • Batten, SR., Matveeva, EA., Whiteheart, SW., Vanaman, TC., Gerhardt, GA., Slevin JT. Linking kindling to increased glutamate release in the dentate gyrus of the hippocampus through the STXBP5/tomosyn-1 gene. Brain Behav.  2017, 7(9):e00795. http://www.ncbi.nlm.nih.gov/pubmed/28948088

  • Hunsberger, HC., Wang, D., Petrisko, TJ., Alhowail, A., Setti, SE., Suppiramaniam, V., Konat, GW., Reed, MN. Peripherally restricted viral challenge elevates extracellular glutamate and enhances synaptic transmission in the hippocampus. J. Neurochem.  2016, 138(2):307-16. http://www.ncbi.nlm.nih.gov/pubmed/27168075

  • Hunsberger, HC., Hickman, JE., Reed, MN. Riluzole rescues alterations in rapid glutamate transients in the hippocampus of rTg4510 mice. Metab. Brain. Dis.  2016, 31(3):711-5. http://www.ncbi.nlm.nih.gov/pubmed/26744018.

  • Hascup, KN., Hascup, ER. Soluble Amyloid-β42 Stimulates Glutamate Release through Activation of the α7 Nicotinic Acetylcholine Receptor. J. Alzheimers Dis.  2016, 53(1):337-47. http://www.ncbi.nlm.nih.gov/pubmed/27163813

  • Viereckel, T., Dumas, S., Smith-Anttila, CJ., Vlcek, B., Bimpisidis, Z. Lagerström, MC., Konradsson-Geuken, Å., Wallén-Mackenzie, Å.  Midbrain Gene Screening Identifies a New Mesoaccumbal Glutamatergic Pathway and a Marker for Dopamine Cells Neuroprotected in Parkinson's Disease. Sci. Rep., 2016; 6:35203. http://www.ncbi.nlm.nih.gov/pubmed/27762319.

  • Hinzman, J.M., DiNapoli, V.A., Mahoney, E.J., Gerhardt, G.A. and Hartings, J.A. Spreading depolarizations mediate excitotoxicity in the development of acute cortical lesions. Exp. Neurol., 2015, 267:243-53. http://www.ncbi.nlm.nih.gov/pubmed/25819105.

  • Scofield, M.D., Boger, H.A., Smith, R.J., Li, H., Haydon, P.G. and Kalivas, P.W. Gq-DREADD Selectively Initiates Glial Glutamate Release and Inhibits Cue-induced Cocaine Seeking. Bio. Psychiatry, 2015, 10.1016/j.biopsych.2015.02.016 http://www.ncbi.nlm.nih.gov/pubmed/25861696.

  • Farrand, A.Q., Gregory, R.A., Scofield, M.D., Helke, K.L. and Boger, H.A. Effects of aging on glutamate neurotransmission in the substantia nigra of Gdnf heterozygous mice. Neurobiol. Aging, 2015, 36(3):1569-76. http://www.ncbi.nlm.nih.gov/pubmed/25577412.

  • Cherian, A.K., et al. A systemically-available kynurenine aminotransferase II (KAT II) inhibitor restores nicotine-evoked glutamatergic activity in the cortex of rats. Neuropharmacol., 2014, 82(41-8. http://www.ncbi.nlm.nih.gov/pubmed/24647121.

  • D'Amore, D.E., et al. Exogenous BDNF facilitates strategy set-shifting by modulating glutamate dynamics in the dorsal striatum. Neuropharmacol., 2013, 75(312-23. http://www.ncbi.nlm.nih.gov/pubmed/23958449.

  • Eriksson, T.M., et al. Bidirectional regulation of emotional memory by 5-HT1B receptors involves hippocampal p11. Mol. Psychiatry, 2013, 18(10):1096-105. http://www.ncbi.nlm.nih.gov/pubmed/23032875.

  • Grupe, M., et al. Selective potentiation of (alpha4)3(beta2)2 nicotinic acetylcholine receptors augments amplitudes of prefrontal acetylcholine- and nicotine-evoked glutamatergic transients in rats. Biochem. Pharmacol., 2013, 86(10):1487-96. http://www.ncbi.nlm.nih.gov/pubmed/24051136.

  • Nevalainen, N., et al. Striatal glutamate release in L-DOPA-induced dyskinetic animals. PloS one, 2013, 8(2):e55706. http://www.ncbi.nlm.nih.gov/pubmed/23390548.

  • Hinzman, J.M., et al. Disruptions in the regulation of extracellular glutamate by neurons and glia in the rat striatum two days after diffuse brain injury. J. Neurotrauma, 2012, 29(6):1197-208. http://www.ncbi.nlm.nih.gov/pubmed/22233432.

  • Matveeva, E.A., et al. Kindling-induced asymmetric accumulation of hippocampal 7S SNARE complexes correlates with enhanced glutamate release. Epilepsia, 2012, 53(1):157-67. http://www.ncbi.nlm.nih.gov/pubmed/22150629.

  • Matveeva, E.A., et al. Reduction of vesicle-associated membrane protein 2 expression leads to a kindling-resistant phenotype in a murine model of epilepsy. Neurosci., 2012, 202(77-86. http://www.ncbi.nlm.nih.gov/pubmed/22183055.

  • Onifer, S.M., et al. Cutaneous and electrically evoked glutamate signaling in the adult rat somatosensory system. J. Neurosci. Meth., 2012, 208(2):146-54. http://www.ncbi.nlm.nih.gov/pubmed/22627377.

  • Thomas, T.C., et al. Hypersensitive glutamate signaling correlates with the development of late-onset behavioral morbidity in diffuse brain-injured circuitry. J. Neurotrauma, 2012, 29(2):187-200. http://www.ncbi.nlm.nih.gov/pubmed/21939393.

  • Birgner, C., et al. VGLUT2 in dopamine neurons is required for psychostimulant-induced behavioral activation. Proc. Natl. Acad. Sci. USA, 2010, 107(1):389-94. http://www.ncbi.nlm.nih.gov/pubmed/20018672.

  • Parikh, V., et al. Prefrontal beta2 subunit-containing and alpha7 nicotinic acetylcholine receptors differentially control glutamatergic and cholinergic signaling. J Neurosci., 2010, 30(9):3518-30. http://www.ncbi.nlm.nih.gov/pubmed/20203212.

 

Slice and other applications:

  • Geyer, E.D., Shetty, P.A., Suozzi, C.J., Allen, D.Z., Benavidez, P.P., Liu, J., Hollis, C.N., Gerhardt, G.A., Quintero, J.E., Burmeister, J.J., Whitaker, E.E.Adaptation of Microelectrode Array Technology for the Study of Anesthesia-induced Neurotoxicity in the Intact Piglet Brain. J. Vis. Exp. 2018, 135. https://www.ncbi.nlm.nih.gov/pubmed/29806825.

  • Burmeister, J.J., et al. Glutaraldehyde cross-linked glutamate oxidase coated microelectrode arrays: selectivity and resting levels of glutamate in the CNS. ACS Chem. Neurosci., 2013, 4(5):721-8. http://www.ncbi.nlm.nih.gov/pubmed/23650904.

  • Tolosa, V.M., et al. Electrochemically deposited iridium oxide reference electrode integrated with an electroenzymatic glutamate sensor on a multi-electrode array microprobe. Biosensors & Bioelectronics, 2013, 42(256-60. http://www.ncbi.nlm.nih.gov/pubmed/23208095.

  • Zhou, N., et al. Regenerative glutamate release by presynaptic NMDA receptors contributes to spreading depression. J. Cereb. Blood Flow Metab., 2013, 33(10):1582-94. http://www.ncbi.nlm.nih.gov/pubmed/23820646.

  • Quintero, J.E., et al. Amperometric measurement of glutamate release modulation by gabapentin and pregabalin in rat neocortical slices: role of voltage-sensitive Ca2+ alpha2delta-1 subunit. J. Pharmacol Exp Therap., 2011, 338(1):240-5. http://www.ncbi.nlm.nih.gov/pubmed/21464332.

  • Quintero, J.E., et al. Methodology for rapid measures of glutamate release in rat brain slices using ceramic-based microelectrode arrays: basic characterization and drug pharmacology. Brain Res., 2011, 1401(1-9. http://www.ncbi.nlm.nih.gov/pubmed/21664606.

  • Burmeister, J.J., et al. Ceramic-based multisite microelectrodes for electrochemical recordings. Anal Chem, 2000, 72(1):187-92. http://www.ncbi.nlm.nih.gov/pubmed/10655652.