Anesthetized Animals:
-
Parikh, V., et al. Interactions between Abeta oligomers and presynaptic cholinergic signaling: Age-dependent effects on attentional capacities. Behav. Brain Res. 2014, 274(30-42. http://www.ncbi.nlm.nih.gov/pubmed/25101540.
-
Yegla, B. and Parikh, V. Effects of sustained proNGF blockade on attentional capacities in aged rats with compromised cholinergic system. Neurosci., 2014, 261(118-32. http://www.ncbi.nlm.nih.gov/pubmed/24374328.
-
Parikh, V., et al. Diminished trkA receptor signaling reveals cholinergic-attentional vulnerability of aging. Eur. J. Neurosci., 2013, 37(2):278-93. http://www.ncbi.nlm.nih.gov/pubmed/23228124.
-
Parikh, V., et al. The presynaptic choline transporter imposes limits on sustained cortical acetylcholine release and attention. J. Neurosci., 2013, 33(6):2326-37. http://www.ncbi.nlm.nih.gov/pubmed/23392663.
-
Howe, W.M., et al. Enhancement of attentional performance by selective stimulation of alpha4beta2(*) nAChRs: underlying cholinergic mechanisms. Neuropsychopharmacol., 2010, 35(6):1391-401. http://www.ncbi.nlm.nih.gov/pubmed/20147893.
-
Parikh, V., et al. Prefrontal beta2 subunit-containing and alpha7 nicotinic acetylcholine receptors differentially control glutamatergic and cholinergic signaling. J. Neurosci., 2010, 30(9):3518-30. http://www.ncbi.nlm.nih.gov/pubmed/20203212.
Awake-Behaving Animals:
-
Howe, W.M., et al. Acetylcholine Release in Prefrontal Cortex Promotes Gamma Oscillations and Theta-Gamma Coupling during Cue Detection.J. Neurosci. 2017, 37(12):3215-3230. http://www.ncbi.nlm.nih.gov/pubmed/28213446
-
Gritton, HJ.et al. Cortical cholinergic signaling controls the detection of cues. Proc. Natl. Acad. Sci. USA. 2016;113(8):E1089-97.https://www.ncbi.nlm.nih.gov/pubmed/26787867
-
Bortz, DM., et al. Positive allosteric modulators of the α7 nicotinic acetylcholine receptor potentiate glutamate release in the prefrontal cortex of freely-moving rats. Neuropharmacol., 2016;111:78-91. https://www.ncbi.nlm.nih.gov/pubmed/27569994
-
Howe, W.M., et al. Prefrontal cholinergic mechanisms instigating shifts from monitoring for cues to cue-guided performance: converging electrochemical and fMRI evidence from rats and humans. J. Neurosci., 2013, 33(20):8742-52. http://www.ncbi.nlm.nih.gov/pubmed/23678117.
-
Mattinson, C.E., et al. Tonic and phasic release of glutamate and acetylcholine neurotransmission in sub-regions of the rat prefrontal cortex using enzyme-based microelectrode arrays. J. Neurosci. Methods, 2011, 202(2):199-208. http://www.ncbi.nlm.nih.gov/pubmed/21896284.
-
Zhang, H., et al. Spatiotemporal coupling between hippocampal acetylcholine release and theta oscillations in vivo. J. Neurosci., 2010, 30(40):13431-40. http://www.ncbi.nlm.nih.gov/pubmed/20926669.
-
Zhang, H., et al. Acquiring local field potential information from amperometric neurochemical recordings. J. Neurosci. Methods, 2009, 179(2):191-200. http://www.ncbi.nlm.nih.gov/pubmed/19428527.
Other:
-
Sarter, M. and Kim, Y.Interpreting chemical neurotransmission in vivo: techniques, time scales, and theories. ACS Chem Neurosci.2015, 6(1):8-10. http://www.ncbi.nlm.nih.gov/pubmed/25514622.
-
Sarter, M. et al. Phasic acetylcholine release and the volume transmission hypothesis: time to move on. Nat Rev Neurosci, 2009, 10(5):383-90. http://www.ncbi.nlm.nih.gov/pubmed/19377503.